Division of complex numbers

In this unit we are going to look at how to divide a complex number by another complex number.
Division of complex numbers relies on two important principles. The first is that multiplying a complex number by its conjugate produces a purely real number. The second principle is that both the numerator and denominator of a fraction can be multiplied by the same number, and the value of the fraction will remain unchanged.
For example, starting with the fraction $\frac{1}{2}$, we can multiply both top and bottom by 5 to give $\frac{5}{10}$, and the value of this is the same as $\frac{1}{2}$. We say that $\frac{1}{2}$ and $\frac{5}{10}$ are equivalent fractions.

Example. Suppose we want to divide the complex number $(4+7 \mathrm{i})$ by $(1-3 \mathrm{i})$, that is we want to find

$$
\frac{4+7 i}{1-3 i}
$$

We won't change the value of this fraction if we multiply both numerator and denominator by the same value. We multiply by the conjugate of the denominator, which is $1+3 \mathrm{i}$, and then simplify.

$$
\begin{aligned}
\frac{(4+7 \mathrm{i})(1+3 \mathrm{i})}{(1-3 \mathrm{i})(1+3 \mathrm{i})} & =\frac{4+12 i+7 i+21 i^{2}}{1+3 i-3 i-9 i^{2}} \\
& =\frac{-17+19 \mathrm{i}}{10} \\
& =-\frac{17}{10}+\frac{19}{10} i \\
& =-1.7+1.9 \mathrm{i}
\end{aligned}
$$

Example. Suppose we want to divide the complex number $(2-5 \mathrm{i})$ by $(-4+3 \mathrm{i})$, that is we want to find

$$
\frac{2-5 i}{-4+3 i}
$$

We multiply by the conjugate of the denominator, which is $-4-3 \mathrm{i}$, and then simplify.

$$
\begin{align*}
\frac{(2-5 i)(-4-3 i)}{(-4+3 i)(-4-3 i)} & =\frac{-8-6 i+20 i+15 i^{2}}{16+12 i-12 i-9 i^{2}} \\
& =\frac{-23+14 i}{25} \\
& =-\frac{23}{25}+\frac{14}{25} i \\
& =-0.92+0.56 \mathrm{i} \tag{2dp}
\end{align*}
$$

In the next unit we will introduce the Argand Diagram, which is a graphical way of representing complex numbers.

